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SUMMARY 
In this paper the heat transfer in the second order boundary layer flow of an incompressible fluid with 
uniform oncoming stream is studied at low Prandtl numbers using the method of matched asymptotic 
expansions. The suction and injection are also included in first as well as second-order problems. For each 
of the second-order effects due to longitudinal curvature, transverse curvature, displacement and suction 
or injection the first five terms in an asymptotic expansion are obtained and compared with available exact 
results. 

I. Introduction 

I t  is well known that there are a large number of  flow situations which cannot be dealt 
with in the framework of classical or Prandtl 's boundary-layer theory. For such more 

complicated flows more accurate solutions of Navier-Stokes'  equations than that of  classical 
boundary-layer theory are needed. One such class of  problems is governed by what is 

known as higher-order boundary layer theory [1]. 
The classical boundary layer theory of PrandtI forms the first term in an asymptotic 

expansion of the Navier-Stokes equation for large Reynolds number. The second term of 
the asymptotic expansion (of the order R -~) includes the effects of  curvature and inter- 

action of the boundary layer with the external flow such as displacement and vorticity, 
provided the parameters representing these effects are of  order unity. The second-order 
boundary-layer theory has received attention from many authors and a critical review has 

been recently given by Van Dyke [2]. 
The objective of  the present work is to calculate the heat transfer at small values of  the 

Prandtl number, due to second-order effects in two-dimensional and axisymmetric incom- 
pressible fluid flows with suction and injection. The free stream is assumed to be uniform 
and at zero angle of  attack. The problem is of  interest in heat transfer in liquid metals. 
The utility of  such an analysis to gas flow is discussed in [5]. Further, it is well known that 
studies of  such limiting solutions for small Prandtl number are useful even if the Prandtl 

number does not really has limiting values. The method of matched asymptotic expansions 
is employed to obtain low Prandtl number solutions that include the effects of longitudinal 
curvature, transverse curvature, displacement and first and second-order suction. For  each 
of the second order effects, the first five terms in the asymptotic expansion for small Prandtl 
number has been evaluated. For  the first order problem with zero suction, the small Prandtl 
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56 N.  A f z a l  

number solutions have been studied by Morgan, Pipkin and Warner [3], Goddard and 
Acrivos [4] and Narasimha and Afzal [5]. 

2. Governing equations 

The Navier-Stokes equations for a steady, plane and axisymmetric flow of an incompressible 
fluid in the usual nondimensional notation are [1] 

div U = 0, 

U. grad U + grad P = - R - i  curl curl U, 

U.grad T -  ( a R ) - i V Z T  = O. 

(1) 

(2) 

(3) 

Here U = (u, v) is the velocity vector, P the static pressure, T the static temperature, R the 
characteristic Reynolds number and a the Prandtl number. The boundary conditions are: 
at the wall (n = 0) 

T =  r w, u = O, v = R - % w l ( s )  + e - l v ~ , 2 ( s )  + . . . .  (4a) 

and far away from the body 

U = i, T = To~, (4b) 

where vector i is the unit vector in the direction of free stream. 
The outer expansions for the variables are [1] 

u = Ul ( s ,  n) + R - ~ U z ( s ,  n) + . . . ,  

v = V~(s, n) + R - ~ V 2 ( s ,  n) + . . . .  
(5) 

p = P i ( s ,  n) + R - ~ P z ( s ,  n) + . . . ,  

T = Ti(s ,  n) + R - ~ T z ( s ,  n) + . . . .  

Substituting these expansions in the Navier-Stokes equations and collecting the coefficients 
of same order, the first term gives the well-known Euler equations and the second term 
the equations for displacement flow. 

The inner expansions written in terms of the inner (Prandtl) variable 

N = n x / R  

are as follows [1] 

u = ul(s ,  N )  + R - ~ u 2 ( s ,  N )  + . . . ,  

v = R - ~ v l ( s ,  N )  + R-lv2(s, N )  + . . . .  
(6) 

p = p ~ ( s , N )  + R  p 2 ( s , N ) +  . . . .  

T = t i (s ,  N )  + R-X~t2(s, N )  + . . . .  

Here the first term gives the equations for Prandtls boundary layer and the second term 
gives the corrections needed at moderately large Reynolds number. Matching the inner 
and outer expansions in an overlap domain the additional boundary conditions needed for 
closure are obtained. 
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Heat transfer in higher-order boundary layer f lows at low Prandtl number 57 

Introducing the following similarity variables 

= f l  Ut(s'O)r2Jds' " = NUl(s'O)rJ/x/(2~) (7a, b) 

and the expressions for first and second order stream functions and temperature 

~/1 = ~/(2~)f(q), tx(s, N) = T~ + (Tw - T~)g01), (8a, b) 

02 = x/(Zr tz(s, N) = (T w - T~)G(rl), (9a, b) 

the first and second-order boundary layer equations reduce to the following [6, 7]. 
First order boundary-layer equations: 

f "  + f f "  + fl(1 - f , 2 )  = 0, (10) 

f(0) = C~, f ' (0) = 0, f ' (oo) = 1, ( l la ,  b,c) 

9" + aft]' = 0, (12) 

9(0) = 1, g ( o e ) =  0. (12a, b) 

Here fl, the well-known Falkner-Skan pressure gradient parameter and C1 = - ~ / ~ v w , / U 1  
the first order suction at the wall are assumed to be constants. 
Second-order boundary layer equations: 

F" + fF"  - 2flf 'F' + f " F  = kl[--q( fl + 1) f"  + (fi - 1)(f" + f f ' )  

+ 2fi(,&/ + e)]/(fl + 1) + k t [ - t l (2  fl + f ' )  + f "  + f f ' ]  - 2flD, (13) 

F(0) = Ca, F'(0) = 0, (14a, b) 

F'(tl) ~,, - k f f l  + k t t  1 + D as 1/--+ 0% (14c) 

G" + GiG' + ~rFg' = - ( k ,  + kt)(rlg')', (15) 

6(0) = a(oo) = 0. (16a, b) 

In the above equations the terms proportional to k~ arise because of the longitudinal 
curvature, k t due to transverse curvature, D due to displacement and C2 due to second 
order suction or injection. These parameters are defined as 

k 1 = x/(2~)K/[rJU,(s, 0)1, 

k, = x/(2r cos O/[r 2+ *U,(s, 0)], 

O = U2( s  , O ) /UI ( S  , 0) ,  (17)  

C 2 = - - 4 2 - ~  Uw2/UI ( s  , 0) ,  

and should be constant for jointly self-similar flows. Further, the quantity ~ is defined by 

= lim (q - f ) .  (18) 
//--+ oO 

The momentum and energy equations for the first and second-order problems are not 
coupled. Hence for studying their solutions at low o- the solution of the momentum equa- 
tions may be assumed to be known [6, 7]. We need their solutions for large t/: 
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f = r / -  ~ + 0(r/-~ (19a) 

F = - k v i 2 / 2  + k tq2/2  + Dq - 5 + 0(r/-~176 (19b) 

Here  the symbol  0(r/-o~) denotes exponentically small terms in the limit as ~ -+ oo. 

3. First-order solut ions  at l ow Prandtl  number  

The low a analysis o f  the first-order boundary- layer  equations (12) for  fl = 0 = Cj has 
has been made  by Nara s imha  and Afzal [4]. We here first extend their analysis for  arbi t rary  

values of  fl and C 1 and then proceed to the study of  second-order  equations.  
Fol lowing N a r a s i m h a  and Afzal  we study two limits: an  inner (defined as a ~ 0 with 

r/fixed) and an outer  (~ = a~q fixed as a ~ 0), a long with two corresponding asymptot ic  
expansions and match  them in an overlap domain.  

The inner expansion is 

g = ~_~ gm(r m/2 (20) 
m = O  

and the corresponding inner equations are 

! 
g'~ = g~ = O, g/, = - f g . - z ,  n = 2, 3, 4 . . . . .  (21) 

The solutions to the first five equations which satisfy the boundary  conditions at the wall are 

go = aoq + 1, ga = a~rl, 

g2 = - a o [ q 3 / 6  - aq2/2 + qlo(q) - I i(q)]  + azq, 

ga = - a o [ q a / 6  - ~q2/2 + rllo(q) - Ii(r/)] + a3q, 
(22) 

gr = - a o [ q S / 4 0  - aq4/8 + azqs /6  + (q3/6 - ~qz/2)Io(r/) 

- Is(r/)/6 + ~Iz(rl)/2 + r/Ioo(r/) - I~o(,)] 

- a2[q3/6 - a~/2/2 + qlo(rl) - I i(q)]  + a4q. 

Here  I,.(r/) and lm.(q) are certain integrals defined by 

tm = .tl nT/*(n0&l, (23) 

= I n ~17f*(rh)I . (rh)d~h,  (24) Ira. 
do 

and 

f* (q)  = ~ - ~/ + f(r/) (2s) 

is exponential ly small as i / ~  ~ .  These integrals are bounded  as r / ~  ~ .  
The above solution (22) do not  satisfy the boundary  condit ion at infinity and is singular 

there. This singularity is similar to one encountered in improving Stokes '  solution for  low 
Reynolds  number  flow past  a circular cylinder (Van Dyke  [8]). 

In  the outer  limit (~ = a~q fixed as a ~ 0) valid for  large r/ the energy equat ion (12) 
using (19a) yields: 
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gr162 (~ - a+e)9r = 0(a~), (26) 

an equation which is correct to all orders in a, i.e. the error is exponentially small. This is 
due to the fact that the thermal boundary layer is much thicker than the momentum 
boundary layer and all that the momentum layer does far away is to displace the stream 
lines from their inviscid position by an amount e. The outer equations of all the orders 
in a proceed from this simple equation which can be solved once and for all. If 

Z = ~ - o'~c~ (27) 

the equation (26) reduces to 

9zz + ZOz = 0. (28) 

The solution to this equation satisfying the boundary condition at infinity is 

( 2 )  ~ err /x/ g = - b  (Z 2) (29) 

where eft(x) is the well-known error function, defined by 

= e dt. (30) erf(x) -t~ 
o 

Further, b = b(a) is a constant of integration independent of Z, but a function of a, say: 

b = Z bm ffm/2. (31) 
m=o 

Matching the inner and outer expansions (20) and (31) in the overlap domain we get 

b =  1 - + - - r e  - ~/--~-- I~176 + 6~- c~3 

4c~a2 [ 12-~z  ] 
..}_ __ i1 (o0)  _1_ ~3 = + 

and the heat transfer rate at the wall is 

(32) 

j2o 
' - = - -  + . / - -  r o ( O O )  + 7"g 

2a2 Cdo(OO ) q_ [1(oo) ~3 
rc ~37 + O(a~). (33) 

A uniformly valid solution, to the lowest order, can easily be written down by subtracting 
the common part from the union of the inner and outer solutions and will not be given 
here to save space. 

4. Second-order solut ions  at low Prandt l  number 

Let us first consider the second-order momentum equation. Its solution, needed later, valid 
for large t/, is 
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F = -k t t l2 /2  + ktq2/2 + Dq - 6 + 001-~).  

It is advantageous to define a function 

F* = 6 - Dq + kzq2/2 - ktq2/2 + F(q) 

N. Afzal  

(34) 

(35) 

which is bounded throughout the domain: for large t/ it is exponentially small and for 

t / =  0 its value is 6 + C 2. 
We now study the second-order energy equation for a ~ 0. Here again two limits and 

the two corresponding asymptotic expansions are studied. An inspection of the first-order 
solution suggests the following inner expansion 

G = ~, Gma m/2. (36) 
m = 0  

Substituting the inner expansions (20) and (36) in the energy equation (15) and collecting 
the coefficients of like powers of o -~, we get 

G~ = - ( k ,  + k t )g ' ,  m = 0, 1 (37) 

G~, = - ( k  t + k,)g'm + [(kz + k , )q f  - F]9~_ 2 - f G m _ 2 ,  m = 2, 3, 4 . . . . .  

Integration of the first five of the above equations which satisfy the boundary conditions 

at the wall yields 

G o = Aoq , G 1 = - ( k  t + k,)alq2/2 + A t ,  

G 2 = - A o q 3 / 6  + [Ao~ - (kz + k t ) a l ] t l 2 / 2  -b [/12 - Ao(q)]q + Aola(q), 

G3 = al(6k, - 4kt)t/4/24 - [A~ + axD + 3a~(kt + kt)]~13/6 

+ [Ala + a16 + (kl + kt){allo(q) - a3}]q2/2 

+ [A3 - Al lo(q)  - af lo(q)  + (kl + kt)alllO1)]q 

+ A l I l (q )  + atJa(q) - 3(kt + kt)a~I2(q)/2, 

G4 = Aot/5/40 + [-3Aoc~ + az(6kt + 4kt)]q4/24 (38) 

q- [ - A  2 -1- A0 ~z - 3a2ct(kt + kt) - a2 D + AoIo(q)]q3/6 

+ [A2a + a26 - a4(kt + kt) + {a2(k: + ks) - Aoc~}Ii(tl)]qz/2 

+ [A4 + az{(kt + kt)I~Ol) - Jo(q)} + Aoloo(q) + Azlo(q)] ,  

Here Am'S 
defined by 

J m ( n ) = f l n T F * ( n l ) d q l .  

Its behaviour for large ~/is 

Jm(t]) = Jm(OO) + 0(t/-o~) as t / ~  oo. 

+ A2II(t/) - AolaO1)/6 - Aollo(q) + a2Jl(t/) 

+ [Ao~ - 3(kt + kt)a2]I2(tl)/2. 

are constant of integration to be determined and Jm(r/) is a bounded integral 

(39) 

(40) 
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The inner solution (38) not only fails to satisfy the boundary condition at infinity but is 
singular there. To analyse the nature of the singularity at large ~/, an order of magnitude 
analysis of the equation (15) employing the outer variable ~ = ~+~/is carried out. It leads 
to the following outer variable 

z (O = ~ G ( ~ )  

and the outer limit as Z, [ fixed as ~ ~ 0. Using solution (35) of the second-order momen- 
tum equation for large r/, the second-order energy equation in the outer limit yields 

Z;~ + (~ - ~ ) Z ~  

= g~[(3k t + kt)[z/2 - a}~(D + ~k z + uk,) - k,  - k t + 6o-] + 0(a~~ (41) 

The above equation is also correct to all orders in a, i.e. the error is exponentially small 
as a ~ 0. Introducing the variable Z we get 

Xzz + ZZz = gz[(3kl + kt)Z2/2 "4- rr~Z(2kl~ - D) 

+ kt(~r162 - 1) - k,(1 + a~2/2) + ~(6 - D~)]. (42) 

The solution of the above equation, which satisfies the boundary condition at infinity is 

B 
Z = x/2 F( 1, ZZ/2) + b[k,(1 - rr~2/2) + kt(1 + ac~2/2) + rr(D~ - 6)] 

cr~b 
x F(1, Z2/2) + ~ -  (D - 2k,~)r(k, Z2/2) - b(kl + k,/3)F(2, ZZ/2), (43) 

where B is a constant of integration independent of Z but a function of a, say: 

B = Z B,, rr'/2. (44) 
m = 0  

The function F(m, x) is the incomplete gamma function defined by 

= I ;  e-Zz~-1 dz. (45) F(m, x) 

Its asymptotic behaviour for small values of x, needed for matching is 

Z=~Ol. ( -  1)" l xm+, .  (46) r(m,  x) = r (m)  - (m + n)r(n + 1) 

Matching the inner and outer solutions we get 

4k, [2~r _~_} [.~_ ] [- 8 k ~ kz~ 2or 
B = - 3-7-  + , 7  S -  ' + - - k' 2 + k' 2 - 

~2~r8k, { 24-rc } 2 D ~  z 4~.] 
- I I ( ~ 1 7 6  + 67 a3 + - - k ' ~ 3  + 

TC 7~ 

+ - -  J~(oo) - kt ~I2(oo)  + c~I~(oo) + - - ~ 4  + 
g 6re 

Journal of Engineering Math., Vol. 10 (1976) 55-67 



62 N. Afzal  

~z-8  
+ k t --~I2(o0) + - -  I1 (~  ) + ~ - ( 3 / r  2 +,40n - 480) 

1 2 - r e  
+ D I1(~  ) 6re 

c~3} + &~2 1 2 -  7r] 
- -  - -  + 0 ( ~ r  

2re 
(47) 

The temperature gradient at the wall is 

G'(O) = Y~ Amd "/2 
m=0 

~ 2a 8 - 3~ 
4 k t  + k t ~  _ _ _  

3rr ~ 3~ 

L25 4 { 
+ a kt lo(~ + 2 ~  2 

rc 3re 

+ 3~- {(8 - 3~Z)Mo(OO) 

+ kfldoo) + D {-�89 

2 0.2I + - -  J t ( ~ )  + aJo(~)  

2k t ( (re - 8) + ~-~-~I2(oo) + ~ -  

6- - re  
+ 

7"C 

- -  k t { ~ I 2 ( ~  ) + ~11(oo)} + D { I ~ ( ~ )  

+ 6 Io(oV) + - - c r  2 + 0(a)L 
7~ 

~3 } 
+ (8 + 3rc)Ii(m ) + ~-(37Z 2 - -  68r~ + 192) 

1 + 4re u2 zc ~ 

all(oo) + Ioo(OO) - I~(oo) 

cr - ~- (3re  2 - 46rc + 120) 

2(~ - 3) ) 
+ 3~ a3 

(48) 

5. Decomposition of second-order heat transfer results 

It may be noted that the first-order boundary-layer equations are nonlinear while the 
second-order boundary-layer equations are linear. Thus the second-order effects can be 
linearly separated out into several effects, each associated with a particular interpretation. 
In the present study these can be divided into terms representing the transverse curvature, 
longitudinal curvature, displacement and second-order suction. Thus we set 

F = ktF~(tl) + ktFt(tl) + DFd(q) + C2F~(r/), 

t 2 = klt21(t] ) "4- k t t2t(r l )  + Dt2d(q) + C2t2c( t l ) ,  

= k l ~  l "~- ktc~ t + Dc~ d + C2t~ c. 

(49) 

(so) 

(51) 
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The  equat ions for  F,  etc. can easily be writ ten down and will not  be given here. Decompos ing  
the expression for  second-order  heat  t ransfer  (48) into the above  four  componen t s  we get the 
following: 

Transverse curvature." 

4 
t'2t(O)/(Too - T . )  - -- - - ~  + a 

3n 3n 

X 
I 2r t 4 { 

-- + lo(00) + - -  - a 2 - -  - - 3 n  J o t ( 0 0  ) + (8 - 3n)Mo(00) VVD-~ ~ 

+ (8 + 37011(00 ) + ~ -  (3n z - 68n + 192) - 3(4 - n)a3, 

4az I n - 8 37z 3{c~J~ + J t t (~176  - 912(~176 + - - e I 1 ( 0 0 )  
7~ 

+ loo(00 ) - 12(oo) + - -  
6 - 2n  a ,  

~210(00 ) - -  (12n z - 18n + 480) 
5g 

{ }1 + 36t lo(00) + fn  ~2 + O(a~). 

Here  

J m t ( q ) = f l r l m ( a t - q 2 / 2 + F , ) d q ,  

6 t = lira (~/z/2 - Ft). 
?/-+ 00 

(52) 

(53a) 

(53b) 

Longitudinal curvature: 

t2t(O)/(T~ Tw) 23,a . / 2 a 3  ~ 

i 

' - - - -  + - -  J o t ( 0 0 ) - 1 1 ( ~ 1 7 6  + - -  
7~ ~/ rC [_ 

2a2 [ 
+ - -  A ~ ( ~ )  + ~Jo~(Oo) - - U d ~ )  - ~ I ~ ( ~ )  ff 

+ 6 ~  I o ( ~ ) + - - ~ z  + O ( o D .  

Here  

;o Jml(tl) = (61 + qz/2 + Ft)dq, 

6z = lira ( - q z / 2  - Ft). 
11~ clo 

4 - n ~5l] 
l 7T 

(54) 

(55a) 

(55b) 
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Displacement: 

t'za(O)l(Too-Tw)=X/7 

N. Afzal 

26a 1-27 r 
<, + VT[Jo,(oo)+ 

4 - = }  --~2t72[Jld(OO)+O~JOd(~)+Ii(o0) + (4~a~ - ~ 2 ) _ ~ _  _ 

3--re 1 + aalo(oO) + 2(3aa~2 _ (~3) ~ -t- 0(0"{). (56) 

Here 

J,,aO#) = j~ q"(ad - q + Fd)dq, (57a) 

an = lim ( t / -  Fd). (57b) 
?/--* o0 

It may be noted that for the special case when first-order suction is absent (C1 = 0) the 
momentum and energy equations admit the following closed form solution 

Fd = �89 + f), Ga = �89 (58a, b) 

The heat transfer rate is given by 

O~(0) = �89 (58c) 

It can be easily shown that for this special case (C1 = 0) 

an = e/2, Joe(m) = 0, Jtd(oo) = -I~(ov)/2,  (59) 

and the result (56) reduces to that given by the closed form expression (58c). 

Second-order suction and injection: 

t2c(O)/(T~ Tw) 26c /-2-~J [- 
' - = + L'ITIJ~ + -  7~ 

2a2rc [ Jl~(~176 + eJ~176176 + 6~I~176176 + 

4 - n 5 c -  ] 

J 7~ 

2(3 re- re) 6~2 ] + O(a~). (60) 

Here 

Jmc(tl)=fi~lrn(ac+Fc)dq, (61a) 

6 c = - F c ( ~ ) .  (61b) 

6. Discussion 

In the earlier sections the contributions to heat transfer, to the order a 2, due to transverse 
curvature, longitudinal curvature, displacement and suction/injection are obtained. The 
leading terms, at low a, for the first order (classical) boundary layer behaves like a ~ while 
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TABLE 1 

Values of integrals evaluated from solutions of first and second-order momentum equations 

65 

/3 1.0 0.5 0.0 -0 .1  

0.64790 0.80455 1.21678 1.44270 
I0(c~) 0.35951 0.53153 1.09143 1.45539 
11(oo) 0.17711 0.30305 0.79617 1.16560 
I2(c~) 0.15831 0.30733 0.99467 1.57624 
I00(oo) 0.06461 0.14126 0.59581 1.05907 
~l 0.73684 1.06503 2.10870 2.83740 
J0l(oo) 0.91760 1.56004 4.12306 0.19394 
Jlt(oo) 0.74227 1.44365 4.79839 7.85781 
~t 0.17400 0.25981 0.49352 0.54548 
Jot(Oo) 0.18880 0.32954 0.76156 0.94699 
JOt(C~) 0.14172 0.28260 0.83746 1.06955 
~a 0.32395 0.40227 0.60839 0.72135 
Joa (~)  0.0 0.0 0.0 0.0 
Jld(c~) --0.08858 --0.15153 --0.39806 --0.58278 
6 c --1.23713 --1.38287 --2.05434 -2 .73510 
Joc(C~) --0.24581 -0 .46142 --1.66344 -3.03345 
Jlc(C~) -0 .17477 -0.36643 - 1.65322 -3.28597 

TABLE 2 

Coefficients for heat transfer series G~(O) = ~ Aim ore~2, i = t, 1, d, c when C 1 = Of  of various second-order 
effects m = o 

i /3 Ao A1 A2 Az A4 

Transverse 1.0 0.4244 0.0782 0.0257 -0.08197 0.07619 
curvature 0.5 0.4244 0.0970 0.0343 -0 .1217 0.1477 

0.0 0.4244 0.1468 0.0924 -0 .2498 0.7009 
0.1 0.4244 0.1740 0.1909 -0.4611 1.680 

LongRudinal 1.0 0.0 0.0 -0 .469  0.6345 -0 .777  
curvature 0.5 -0 .6780 1.238 -1 .5902 

0.0 -1 .3424 3.4827 -5 .9680 
-0 .1  - 1.8063 5.8696 -10 .406  

Displacement 1.0 0.0 0.3989 -0 .2062 0.2904 -0 .2058 
0.5 0.3989 -0.2561 0.2224 -0 .2276 
0.0 0.3989 -0 .3873 0.5937 -0 .8159 

-0 .1  0.3989 -0 .4592 0.9394 1.0107 

Suction and 1.0 0.0 0.0 0.7878 -0 .2695 0.4661 
in jec t ion  0.5 0.8252 -0 .5252 0.8862 

0.0 1.3078 -2.1341 3.5939 
-0 .1  1.7412 -4 .2109 7.0854 
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for  the second-order effect o f  transverse curvature it is like a ~ longitudinal curvature like a, 

displacement like a ~ and suction/injection like a. 

The various integrals in these heat transfer expressions are evaluated by generating the 

solutions o f  the first and second-order m o m e n t u m  equations when C1 = 0 and fl = 

= 1, 0.5, 0.0 and - 0 . I  and their values are given in Table 1. To demonstrate  the utility 

o f  the present low a results, the heat transfer series for each of  the second-order effects are 

evaluated and their coefficients are displayed in Table 2. 

When  a is o f  order unity the series for  fl = 1 o f  the transverse curvature and displace- 

ment  are slowly convergent while those o f  the longitudinal curvature and suction/injection 

are divergent. Fo r  a = 1, the value o f  heat transfer G'(0) due to transverse curvature is 

0.522 and for displacement is 0.277. The corresponding exact results [6] are 0.501 and 0.285. 

For  a = 1 the longitudinal curvature series 

-0 .4691  + 0.6341 - 0.7777 + ... 

and suction/injection series 

0.7878 - 0.2695 + 0.4661 + ...  

are divergent. Some information f rom these series can be extracted by improving the con- 

vergence through the Euler t ransformation (see Meksyn [9]) to yield for longitudinal 

curvature 

- 0 . 2 3 4 5  + 0.0414 + 0.0056 + . . . .  0.187 

and for  suction/injection 

0.3639 + 0.1296 + 0.0893 + . . . .  0.58 

The exact results [6] for longitudinal curvature heat transfer for o- = 1 is 0.161. For  the 

suction/injection case the exact result [7] is known for  o- = 0.7 to be 0.455. The present 

series for  a = 0.7 is 

0.5514 - 0.1578 + 0.2284 + ...  

and the Eulerized version 

0.2757 + 0.0984 + 0.0580 + ...  

yields 0.431 comparable  to exact value o f  0.455. Fur ther  as/3 decreases the radius of  con- 

vergence o f  these series (see Table 2) also decreases when compared  to the case for/~ = 1. 

For  these cases the results can also be improved by using the Euler transformation.  
Thus f rom the above discussion it is clear that  the low o- results are useful even when o- 

�9 is of  order unity. 
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